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Bubble-raft model for a paraboloidal crystal
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We investigate crystalline order on a two-dimensional paraboloid of revolution by assembling a single layer
of millimeter-sized soap bubbles on the surface of a rotating liquid, thus extending the classic work of Bragg
and Nye on planar soap bubble rafts. Topological constraints require crystalline configurations to contain a
certain minimum number of topological defects such as disclinations or grain boundary scars whose structure
is analyzed as a function of the aspect ratio of the paraboloid. We find the defect structure to agree with
theoretical predictions and propose a mechanism for scar nucleation in the presence of large Gaussian

curvature.
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I. INTRODUCTION

Soft materials such as amphiphilic membranes, diblock
copolymers, and colloidal emulsions can form ordered struc-
tures with a wide range of complex geometries and topolo-
gies. Macroscopic models of ordered systems of this type are
desirable for direct visualization and table top demonstra-
tions, and they can be used as control checks of theoretical
predictions. In this paper, we discuss the fabrication of a
paraboloidal soap bubble raft which realizes a two-
dimensional crystalline monolayer with both variable Gauss-
ian curvature and a boundary.

Some 60 years ago Bragg and Nye used bubble rafts to
model metallic crystalline structures [1]. A carefully made
assemblage of bubbles, floating on the surface of a soap so-
lution and held together by capillary forces, forms an excel-
lent two-dimensional replica of a crystalline solid, in which
the regular triangular arrangement of bubbles is analogous to
the close packed structure of atoms in a metal [2]. Feynman
considered this technique to be important enough that the
famous Feynman lectures in physics include a reproduction
of the original Bragg-Nye paper in its entirety [3]. Bubble
rafts can be made easily and inexpensively, equilibrate
quickly, exhibit topological defects such as disclinations, dis-
locations and grain boundaries, and provide vivid images of
the structure of defects. Bubble raft models have been used
to study two-dimensional polycrystalline and amorphous ar-
rays [4], nanoindentation of an initially defect-free crystal
[5], and the dynamic behavior of crystals under shear [6].
Beyond these advantages, rotating the soap solution with
bubbles on the surface provides a flexible playground for
creating crystalline order on a nearly perfect paraboloid. Our
emphasis here is to exhibit a macroscopic example of a
curved crystal with an experiment simple enough to be suit-
able also for lecture demonstrations. This is a complement
to, for example, mesoscale colloidal crystals formed at
liquid-liquid emulsions and stabilized in a spherical geom-
etry by surface tension [7,8]. Mesoscale curved crystals may
be imaged by conventional optical or confocal microscopy
but are more elaborate to prepare.

The interplay between order and geometry has been inten-
sively studied in many systems, including large spherical
crystals [9], toroidal hexatics [10], both crystals and hexatics
draped over a Gaussian bump [11,12], and paraboloidal crys-
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tals [13]. Topological defects are essential in understanding
the crystalline order in a curved two-dimensional manifold.
In some cases (e.g., the sphere) the topology requires that a
certain minimum number of defects be present in the ground
state. For a two-dimensional Riemannian manifold M with
boundary JdM, a discrete version of the Gauss-Bonnet theo-
rem for any triangulation of M reads

Q=2 (6-c)+ > (4-c) =6y, (1)
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where ¢; is the coordination number of vertex i and Y is the
Euler characteristic. The quantity ¢g; ,,=6—c; is the disclina-
tion charge for a site i in the interior and measures the de-
parture from perfect triangular order. The analogous quantity
on the boundary is ¢; ;,=4-c;. O thus represents the total
disclination charge. For crystals on the two-sphere (y=2),
0=12, while for crystals on the two-torus (y=0), Q=0. For
the disk topology relevant for our experiment, y=1 and the
total disclination charge Q=6. Provided we restrict ourselves
to the energetically preferred minimal g= =1 disclinations,
we see that any paraboloidal crystal must have at least six +1
disclinations [14].

In the regime of a sufficiently large number of particles,
the isolated disclinations required by the topology are un-
stable to grain boundary “scars,” consisting of arrays of
tightly bound 5—7 pairs radiating from an unpaired +1 dis-
clination. The existence of scars, first predicted in the context
of spherical crystallography [9] and later observed experi-
mentally in colloidal suspensions on spherical droplets [7,8],
has become one of the fundamental signatures of dense geo-
metrically frustrated systems. The possibility of a coexist-
ence of isolated defects and scars was also pointed out [13]
as a consequence of a variable Gaussian curvature in both
frustrated and unfrustrated systems.

Calling z the height of the surface above the xy plane, a
paraboloid is straightforwardly parametrized by the function
z2(r)= I%rz, where r is the polar distance on the xy plane, / the
height of the paraboloid, and R the maximum radius. In order
to provide a position-independent notion of curvature, it is
convenient to introduce the parameter k=2h/R? representing
the normal curvature of the paraboloid at the origin. A rotat-
ing fluid in a cylindrical vessel is a textbook example of a
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FIG. 1. (Color online) Lateral and top view of a computer reconstruction of two paraboloidal rafts with x;~0.15 cm™' [(a), (b)] and
K,=~0.32 cm™ [(c),(d)]. The number of bubbles is N;=3813 and N,=3299, respectively. The color scheme highlights the fivefold (red) and
sevenfold (blue) disclinations over sixfold coordinated bubbles (yellow).

nearly perfect paraboloid of revolution. In this case «
=w’/g, where o is the angular velocity of the vessel and g
the gravitational acceleration [15].

II. METHODS AND RESULTS

To make the bubble rafts, we pump air through a needle
into soapy water. Because the larger bubble sizes we prefer
are most easily made when the vessel is still, we first make
the bubbles and only later spin the vessel to make the pa-
raboloid (cf. Bragg and Nye [1], who spun their system in
order to generate smaller bubbles but stopped the spinning to
look at the bubbles on a flat surface). To image the bubbles,
we mount a CCD digital camera on the top of the vessel,
with lighting from a ring around the (clear) vessel to elimi-
nate glare. The camera rotates along with the whole system
so that the shutter speed is unimportant in imaging the
bubbles. We use a second camera to find the aspect ratio of
the paraboloid. We equilibrate the system and eliminate
stacking of bubbles by imposing small perturbations of the
angular frequency to mimic the role of thermal noise. The
vessel has radius R=5 cm; the height of paraboloids varies
from h=0—-4 cm. The bubble diameter, extracted from the
Delaunay triangulation of our images, is a=0.84(1) mm with
monodispersity Aa/a=0.003. The normal curvature « of the
paraboloid at the origin varies from 0—0.32 cm™!. In addition
to the flat disk, we observe two different curvature regimes:
small curvature «;~0.15cm™' and large curvature «,
~0.32 cm™!. In each curvature class we collected several
data sets with qualitatively similar results. In this paper, we
present two characteristic data sets to illustrate our results.

Figure 1 shows a computer reconstruction of two bubble
rafts with k=«; and k,, respectively. We extract two-
dimensional coordinates from the images with a brightness
based particle location algorithm through via the popular
data analysis language IDL [16]. Data sets are then processed
to correct possible imprecisions and finally Delaunay trian-
gulated. The adjacency list obtained from the Delaunay tri-
angulation is then used to determine the valency and the
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FIG. 2. (Color online) Translational and orientational correlation
functions (g and g4, respectively) for rafts with (a),(b) «
~0.32 cm™!, a=(0.8410+0.0025) mm, and (c),(d) k=~0.15 cm™!,
a=(0.9071%0.0037) mm. All the curves are plotted as functions of
r/a, where r is the planar distance from the center and a is the
bubble radius. The envelope for the crystalline solid decays alge-
braically (dashed line), while the orientational correlation function
approaches the constant value 0.8.
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position of disclination defects. We choose to exclude from
the triangulation the first 3—4 bubble rings formed along the
boundary of the cylindrical vessel, where the sharp concave
meniscus due to the surface tension combined with the native
curvature of the paraboloid was observed to produce a stack-
ing of bubbles in a narrow double layer surrounding the pe-
rimeter of the vessel. This is the only significant boundary
effect we observe in our system and does not hamper the
identification of disclinations in the bulk.

To characterize the order of the crystalline raft, we mea-
sure the translational and orientational correlation functions
g(r) and g¢(r) [17]. The former gives the probability of find-
ing a particle at distance r from a second particle located at
the origin. The function is normalized with the density of an
equivalent homogeneous system in order to ensure g(r)=1
for a system with no structure. Interactions between particles
build up correlations in their position and g(r) exhibits de-
caying oscillations, asymptotically approaching one. For a
two-dimensional solid with a triangular lattice structure the
radial correlation function is expected to exhibit sharp peaks
in correspondence with the sequence r/a= Vn?+nm+m?
=1,v3,2,2V3,..., while the amplitude of the peaks decays
algebraically as r~7 with 7=1/3 (dashed line in Fig. 2).
Within the precision of our data, the positional order of the
paraboloidal crystals assembled with the bubble raft model
reflects this behavior, although with more accurate measure-
ments, one might see dependence of the exponent 7 on the
curvature (because of the proliferation of defects with curva-
ture).

The orientational correlation function gg(r) is calculated
as the average of the product (¢(0)¢*(r)) of the hexatic
order parameter over the whole sample. For each bubble (la-
beled ;) that has two or more neighbors, ;(r)=(1/
Zj)Efilexp(&’ 6), where Z; is the number neighbors of i and
0 is the angle between the j-k bonds and a reference axis.
One expects gq(r) to decay exponentially in a disordered
phase, algebraically in a hexatic phase and to approach a
nonzero value in the case of a crystalline solid. In the sys-
tems studied we find that g¢(r) to approaches value 0.8 in the
distance of 5-6 lattice spacings.

Of particular interest is the structure of the grain bound-
aries appearing in the paraboloidal lattice for different values
of the curvature parameter x. Grain boundaries form in the
bubble array during the growing process as a consequence of
geometrical frustration. As noted, any triangular lattice con-
fined in a simply connected region with the topology of the
disk is required to have a net disclination charge Q0=6. Each
disclination has an energy associated with long-range elastic
distortion of the lattice and a short-range core energy. While
the former is responsible for the emergent symmetry of a
geometrically frustrated crystal, the latter plays the role of
the energy penalty required for the creation of a single dis-
clination defect. Although dependent on the interparticle in-
teractions, and so different from system to system, the dis-
clination core energy is generally much smaller than the
elastic energy, especially in the case of a bubble array where
the particle-particle interaction is dominated by hard-core re-
pulsion. Defects are then favored to proliferate throughout
the crystal. In the flat plane, however, the elastic stress due to
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FIG. 3. (Color online) An enlarged view of the terminating grain
boundary scar shown in Fig. 1(d) for a system with large Gaussian
curvature. The scar starts from the circular perimeter of the vessel
and terminates roughly in the center carrying a net +1 topological
charge. The image of the bubbles (left) shows that they may deform
slightly to better fill space, whereas the computer reconstruction of
the lattice (right) uses perfect spheres of uniform size.

an isolated disclination is extremely high and defects are
energetically favored to cluster in the form of a grain bound-
ary consisting of one-dimensional arrays of tightly bound
(5,7)-fold disclinations pairs. In a planar confined system,
grain boundaries typically span the entire length of the crys-
tal, but if a nonzero Gaussian curvature is added to the me-
dium, they can appear in the form of scars carrying a net +1
topological charge and terminating in the bulk of the crystal.

Prominent examples of grain boundaries are visible in the
two lattices shown in Fig. 1. For a gently curved paraboloid
(with k=~0.15 cm™"), grain boundaries form long (possibly
branched) chains running from one side to the other and
passing through the center. As the curvature of the parabo-
loid is increased, however, this long grain boundary is ob-
served to terminate in the center [see Fig. 1(d); a close-up
version of this image is seen in Fig. 3]. For R=5 cm, the
elastic theory of defects predicts a structural transition at
k.=0.27 cm™! in the limit of large core energies. In this limit
the creation of defects is strongly penalized and the lattice
has the minimum number of disclinations required by the
topology of the embedding surface. In a low curvature pa-
raboloid (k<k,) these disclinations are preferentially lo-
cated along the boundary to reduce the elastic energy of the
system. When the aspect ratio of the paraboloid exceeds a
critical value «.(R), however, the curvature at the origin is
enough to support the existence of a fivefold disclination and
the system undergoes a structural transition. In the limit of
large core energies, when only six disclinations are present,
such a transition implies a change from the Cg, to the Cs,
rotational symmetry group. A semiquantitative understanding
of this phenomenon can be achieved by requiring the topo-
logical charge of a disclination located at the origin of the
paraboloid to be exactly canceled by the smeared out Gauss-
ian “curvature charge”

2 R
gk = f d(i)f dr\r’EK(r) = 277(1 -
0 0

where we have used Vg=rV1+x%2 and K=x2/(1+K*)%
Upon equating gx to 27/6, the charge of a single disclina-
tion, one finds

T A~_.5 |
V1 + k*R? )
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gy~ 11 2
k(R) =~ o (2)
Therefore, when x> k. (R), the Gaussian curvature of the
paraboloid is sufficient to balance the elastic stress intro-
duced by the central disclination and the bulk of the system
acquires a net positive disclination charge. This simple argu-
ment neglects disclination core energies as well as the actual
elastic interaction between defects and curvature. A rigorous
treatment can be found in Ref. [13].

Together with our experimental observations, these con-
siderations point to the following mechanism for scar nucle-
ation in a paraboloidal crystal. In the regime in which the
creation of defects is energetically inexpensive, geometrical
frustration due to the confinement of the lattice in a simply
connected region is responsible for the formation of a long
side-to-side grain boundary. However, when the curvature of
the paraboloid exceeds a critical value (dependent on the
radius of the circular boundary), the existence of a +1 discli-
nation near the center is energetically favored. Such a discli-
nation serves as a nucleation site for 5—7 dislocations and
the side-to-side grain boundary is replaced by a terminating
center-to-side scar. Above the critical curvature the theory
also predicts a regime of coexistence of isolated disclinations
and scars due to the variable Gaussian curvature. For dense
systems (i.e., number of subunits larger than a few hundred
for our geometry), the coexistence is suppressed because the
embedding surface will appear nearly flat at the length scale
of a lattice spacing. The bulk of the system is thus populated
uniquely by scars. This is consistent with our experimental
observation.

Away from the center of the paraboloid, we have com-
pared the crystalline directions with the geodesics starting
from a given reference point (see Fig. 4). Near the boundary,
the directions of both first and second neighbors (in red and
blue, respectively), are reasonably aligned with the geode-
sics. The alignment becomes decorrelated after roughly five
lattice spacings with the decorrelation more pronounced in
the radial direction (maximal principal curvature) where the
normal curvature is largest. As one gets closer to the center,
the geodesic correlation becomes weaker and almost com-
pletely vanishes along the radial direction. Along the angular
direction (minimal principal curvature), on the other hand,
the crystalline axes appear aligned with the geodesic direc-
tions.

III. CONCLUSIONS

In this paper we have discussed the experimental prepa-
ration of a paraboloidal crystal which is readily visualized.
Despite the simplicity of our technique we found good agree-
ment with the elastic theory of defects in curved space.
Bubble rafts are shown to be effective models for the study
of curved crystallography. Bubble assemblages provide a
large number of particles (order 10%) with very simple and
inexpensive equipment. They give access to details that are
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FIG. 4. (Color online) Delaunay triangulation of a portion of the
paraboloidal lattice with k=~0.32 cm™! near the center (top) and the
boundary (bottom). Red (lighter) and blue (darker) lines represent
the geodesics directed toward first and second neighbors,
respectively.

necessarily unavailable to continuous field theories and pro-
vide system sizes that are prohibitive for numerical simula-
tions.

Future experiments might explore varying the shape of
the vessel to investigate the role of the boundary on the bulk
order. This setup is also suitable for studying dynamical phe-
nomena such as the glide of dislocations in the relaxation
process as well as the formation of vacancies and interstitials
(e.g., following Ritacco et al. [18], looking at a cascade of
bursting bubbles on a paraboloid).
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